TYPICAL SAVONIOUS TURBINE

Verifying theoretical analysis to predict the maximum rotational speed and output of turbine using experimental values:

Given:

A Savonious Wind Turbine with a 25% blade overlap

Wind Velocity = 14 ft/s Diameter₍₁₎ 0.75 ft Radius₍₁₎ 0.37 ft Area₍₁₎ 1.5 ft² = 1.06 ft² $\bar{A}_{(1)}$ $\bar{R}_{(1)}$ = 0.26 ft Density = 0.07 lb/ft³

 C_{Tf} = 7.3 (Total force measured for 1/2 a revolution)

 \bar{C}_{Tf} = 5.2

 $C_{d(2,3)}$ = 0.63 (As determined from experimental testing)

Find:

- 1. The maximum rotational speed ω .
- 2. The work being done and maximum theoretical horsepower.
- 3. The energy in the wind and the efficiency of this turbine.

Notes:

- Assume that blade (V₂) **does** affect the turbine (create negative work)
- Assume values for area and radius change as the turbine rotates (RMS theorem)